
International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

PERSISTENT SOFTWARE ATTRIBUTES AND
ARCHITECTURE FOR DISTRIBUTED

APPLICATION

Ravi Uyyala, RaghuRam Battini,Kundan Kumar Mishra

Abstract: Software quality attributes are a collection of closely related behaviors. These attributes can increase software application or system’s value and

gives product differentiation when added properly. Persistent software attributes similar to quality-of-service guarantees: they both require that specified

functional properties remain unchanged during operational use. The main difference between them is that quality-of-services requirements focus on

immediate operational properties, such as processing capacity and latency, where as persistent software attributes focus on the resilience of long-term

software engineering properties such as scalability, reliability, adaptability, and maintainability. Software architects will select off-the-shelf components on

the basis of the specific persistent properties they can contribute to large systems, not just on functionality. To reduce the system development and

maintenance cost, it is requested to make the system modular using off-the-shelf components. The growth of the Internet has led to explosions in volumes

of e-mail traffic and in number of the users of e-mail service. At the same time, large-scale e-mail service providers have appeared. We used the internal

structure of a typical Internet mail system for single server to our email system. We designed and implemented email system and achieved all the design

objectives like scalability, availability, and extensibility.

Keywords: Common Object Request Broker Architecture (CORBA), Domain Name System (DNS), Internet Message Access Protocol (IMAP), Mail

Delivery Agent (MDA), Mail Retrieval Agent(MRA), Mail Transfer Agent(MTA), Mail User Agent(MUA).

——————————  ——————————

1 .Introduction

Software quality attributes are a collection of closely related

behaviors. These attributes can increase software application or

system‟s value and gives product differentiation when added

properly. Examples of software quality attributes are

maintainability, reliability, usability, efficiency, adaptability,

availability, security, portability, scalability, safety, fault-tolerance,

testability, reusability and sustainability [5]. These attributes have

no value as a stand-alone item. These software quality attributes

suffer from the direct measurement. Software quality measurement

can be subjective and not absolute. Without serious definition and

consideration of the quality attributes during the initial project

initiation phases, any hope that the software product will

ultimately satisfy its end users‟ expectations is small. In a few

decades, software has expanded from its homey slots within

isolated computers to vast distributed systems. We should keep

reasonable cost when adding software quality attributes to

software product. In this new software engineering, people will

select off-the-shelf components on the basis of the specific

persistent properties they can contribute to large systems, not just

on functionality.

The new software engineering will more complex, but it will also

lower costs and increase capabilities the way that good house

construction does: by placing the right properties at the right real-

space locations. Ironically, bringing awareness of real space issues

into software design will also bring software engineering closer to

its roots in older forms of engineering, ones that haven‟t had the

luxury of neglecting a concept as basic as where components are

located in space [6]. Making software truly adaptable is one of

software design‟s trickiest challenges, requiring both unnatural

skill for estimating how software will change over time and an

artistic ability to express change needs in terms that later users can

easily understand.

Constructing persistent software attributes will necessarily be more

automated, complex, dynamic and geographically distributed than

constructing simple software quality attributes. Everyone is

writing software, it‟s time for software engineering to take up the

challenges of architectural leadership. Persistent software

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

attributes similar to quality-of-service guarantees: they both

require that specified functional properties remain unchanged

during operational use. The main difference between them is that

quality-of-services requirements focus on immediate operational

properties, such as processing capacity and latency, where as

persistent software attributes focus on the resilience of long-term

software engineering properties such as scalability, reliability,

adaptability, maintainability and portability, etc[1].

Architecture of distributed application is depends on type of

application. It defines the agreements through which they interact

with external components and with each other. Basically there are

two architectures: two-tier (client/server) and three-tier, also

commonly called as n-tier. Client-server describes the relationship

between two computer programs in which one program, the client

program, makes a service request to another, the server program.

Standard networked functions such as email exchange, web access

and database access, are based on the client-server model. In

software engineering, n-tier architecture (often referred to as multi-

tier architecture) is a client-server architecture in which the

presentation, the application processing, and the data management

are logically separate processes. For example, an application that

uses middleware to service data requests between a user and a

database employs multi-tier architecture. The most widespread use

of “n-tier architecture” refers to three-tier architecture.Persistent is

the ability to have information from an application instance

existing for later instances of the application (or even other

applications) to use [2]. Scalability is the ability of computer

application or product (either hardware or software) to continue to

function well when it (or its context) is changed in size or volume

in order to meet a user‟s need.

 2. Literature Survey

The software attributes are a collection of closely related behaviors

that by themselves have little or no value to the end users but that

can greatly increase a software application or system‟s value when

added. Examples of software attributes include:

Maintainability: In software engineering, the ease with which a

software product can be modified in order to correct defects, meet

new requirements, make future maintenance easier, or cope with a

changed environment; these activities are known as software

maintenance.

Reliability: The ability of a system or component to perform its

required functions under stated conditions for a specified period of

time.

Usability: The degree to which an object, device, software

application, etc. is easy to use with no specific training.

Adaptability: the ability to change (or be changed) to fit changed

circumstances.

Availability: Ability of a component or service to perform its

required function at a stated instant or over a stated period of time.

Security: Security is the degree of protection against danger, loss,

and criminals.

Portability: Portability is the software codebase feature to be able

to reuse the existing code instead of creating new code when

moving software from an environment to another.

Scalability: The degree to which a computer application or

component can be expanded in size, volume, or number of users

served and continue to function properly.

Testability: The capability of the software product to enable

modified software to be tested.

Fault-tolerance: The ability of a system or component to continue

normal operation despite the presence of hardware or software

faults

Reusability: reusability is the likelihood a segment of source code

that can be used again to add new functionalities with slight or no

modification.

Sustainability: Meeting the needs of the present without

compromising the ability of future generations to meet their own

needs.

3. Electronic Mail Systems

Electronic mail is one of the most important of the Internet

services. As a very large, fast growing, Internet Service Provider,

Electronic Mail System requires a robust and powerful email

architecture that will support rapid expansion.

MTA: Mail Transfer Agent is a program responsible for

receiving, routing, and delivering e-mail messages. MTAs receive

e-mail messages and recipient addresses from local users and

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

remote hosts, perform alias creation and forwarding functions,

and deliver the messages to their destinations.

MDA: Mail Delivery Agent is a program that performs the final

delivery into the mail box. Some examples of local MDAs in

UNIX systems are „procmail‟, „/bin/mail‟, and „mail.local‟.

MRA: Mail Retrieval Agent allows one to read the messages

across the Internet. Upon request, an MRA accesses the user‟s

mailbox on a local file system by read/write system calls.

MUA: Mail User Agent. Program that users run to read, reply to,

compose and dispose of email. Examples: pine, elm, mutt.

Filter Program: The message can be filtered by mail filtering

programs on the way to the mailbox.

This modular MTA-MDA structure allows a typical e-mail

system to be constructed as a collection of loosely connected

components that are developed independently. Therefore, some

e-mail systems have been developed to adopt the MTA-MDA

structure on each node for reducing the development cost and

reserving the benefits of flexibility and extensibility. On the other

hand, others use a different proprietary architecture. Now, we

briefly overview some existing email systems on each category.

By decoupling the delivery and retrieval agents from the storage

services and user manager in this way, the system can balance

mail delivery tasks dynamically; any node can store mail for any

user, and no single node is permanently responsible for a user‟s

mail or soft profile information. Another advantage is that the

system becomes extremely fault tolerant by always being able to

deliver or retrieve mail for a user, even when nodes storing the

user‟s existing mail are unavailable. The final advantage is that

the system is able to react to configuration without human

intervention. Newly added nodes will automatically receive their

share of mail-session and storage-management tasks.The system

architecture reveals a key tension that must be addressed in the

implementation. Specifically, while a user‟s mail may be

distributed across a large number of machines, doing so

complicate both delivery and retrieval. On delivery, each time a

user‟s mail is stored on a node not already containing mail for that

user, the user‟s mail map (a potentially remote data structure)

must be updated. On retrieval, aggregate load increases somewhat

with the number of nodes storing the retrieving user‟s mail

.Consequently, it is beneficial to limit the spread of a user‟s mail,

widening it primarily to deal with load imbalances and failure. In

this way, the system behaves (and performs) like a statically

partitioned system when there are no failures and load is well

balanced, but like a dynamically partitioned system otherwise

 Local

 MDA

 Remote

 MUA

 POP

Daemon

Mail

Retrieval

Agents

SMTP

System call

 Pipe

POP

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

4. Design Approach

The proposed system augments an interface module between an

MDA and the remote mailbox in the basic MTA-MDA structure.

Figure 2 shows the proposed e-mail server architecture.

MTA receives an e-mail via standardized SMTP (Simple Mail

Transfer Protocol). When message arrives, the MTA forks local

MDA. As a local MDA, ‟mail.local‟ program is modified. Its role

is to forward the incoming message to the interface module via a

UNIX domain socket. Now, the message delivery role is delegated

to the interface module that stores the input message into the local

file system or transfers it to the interface module of the remote

node.

In the proposed system, we use the off-the-shelf components for

the MTA and the MDA: ‟sendmail‟ for the MTA and ‟mail.local‟

for the MDA. For load balancing of the cluster nodes, the DNS

round-robin mechanism is used to determine which cluster node

receives a new SMTP request. MUA is a client program used by a

user to send or receive emails. The design of the interface module

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

is shown in the figure 3. We define the following basic roles that

the interface module should serve:

1. Authentication of users

2. User information handling

3. Message delivery to the local mail boxes and

4. Message information handling

To serve the above roles of interface module, we designed four

subsystems in the interface module namely Authentication

subsystem, User Information subsystem, Mailbox subsystem, and

Message Information subsystem. Each subsystem manages a set of

functions. A subsystem is a collection of functions. We expect that

these modular subsystems make us easy to replace and improve

them. Authentication subsystem: We designed authentication

subsystem to manage user authentication information using an

SQL Database. User Information subsystem: This subsystem is

used to manage additional information of users such as name,

address and phone number using an SQL Database. Mailbox

subsystem: This subsystem is used to manipulate the mailboxes of

users.

Message Information subsystem: This subsystem is used to keep

additional information of messages such as sender, recipient, date

and size. To make interaction among the Mail delivery agent, Mail

retrieval agent and subsystems of interface module, we used

threads in the interface module namely Location query thread,

Authentication thread, Data and operation thread, and Node and

operation thread. Authentication thread: This thread receives a user

authentication request from POP daemon. It processes user

authentication by calling functions in the authentication

subsystem. After completion of authentication process, this thread

replies to the requesting POP daemon.

Data and operation thread: This thread receives requests from POP

daemon. It process the e-mail messages using subsystems of

interface moduleNode and operation thread: This thread receives

message from the local MDA or from the other nodes. If the

recipient‟s mailbox exists on local node, it stores the message into

the recipient‟s mailbox through function calls in the Mailbox

subsystem. at the same time, it stores the summary of the e-mail

message in the Message information subsystem. If the mailbox

exists on a remote node, it sends message to the remote node.

After completing the message saving, the correspondent thread of

the remote node acknowledges to the requesting node.

Location query thread: This thread receives the recipient‟s identity

from local mail delivery agent. It obtains the destination node

using Authentication subsystem.

Local file

system

Local file

system
Mail box

Interface Interface

Node2

Node1

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Node and

operation

thread

POP daemon

Location query

thread

Authentication

 Thread

Local UDS port

Data and

Operation

thread

Mailbox User Authentication

Local MDA

Another

node

Node and

operation

thread

Node

 TCP port

Message

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 7
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

In the process of remote message delivery, local MDA sends the

message to the remote node directly without intervention of the

interface module of the local node. To make such decision,

however, the MDA should inquire the interface module where the

recipient‟s mailbox is located. Therefore, the interface module of

the proposed e-mail cluster system has a thread named Location

query thread‟ as shown in Figure 3. With the information on the

recipient‟s Identity, the Location query thread obtains the

destination node using the Authentication subsystem.

If the recipient‟s mailbox exists on the local node, MDA transfer

the message to a ‟Node and operation thread‟ in the interface

module. ‟Node and operation threads‟ are the central threads that

process the e-mail messages using the subsystems. A ‟Node and

operation thread‟ is also receives a message from the local MDA

or from the other nodes. We can create as many ‟Node and

operation threads‟ as the number of nodes in the cluster. Each

‟node and operation thread‟ is dedicated to each node including the

local node. The ‟Node and operation thread‟ dedicated to the local

node receives a message by a UNIX domain socket while a ‟node

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 8
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

and operation thread‟ assigned to a remote node, receives a

message by a TCP socket.

Scalability of this system is expressed by message throughput. A

system is highly scalable if the message throughput of the system

increases linearly as the cluster size. We define the message

throughput of e-mail cluster system as the number of messages

that the system can process maximally in a second. We increase

number of nodes in cluster to achieve system scalability with

increased value of message throughput. We use workload

generator generate a certain number of e-mail messages at a

constant rate. Availability of this system is expressed by making a

local failure cause a local, but not global outage. An available

system isolates a local failure from the system operation to avoid

global outage. This system allows one to improve the system

performance easily by upgrading some components.

5. Implementation Details

 The modular structure of the e-mail system allows one to change

the system configuration easily by replacing a component with

another. We have implemented the proposed system with off-the-

shelf software components in Linux platform. We have also

implemented e-mail cluster system based on the NFS mechanism.

We choose the EarthLink system for performance comparison

because it is the only known e-mail cluster to us with an MTA-

MDA structure. Christenson et al. proposed a scalable e-mail

system using the MTA-MDA structure in EarthLink Network, Inc

[5].

System configurations including the EarthLink configuration are

summarized in Table 1.

Configuration MTA Interface Module

EarthLink Sendmail NFS

Present Mail System Sendmail Without NFS

Table 1: Experiment configuration

5.1. Experimental Results

We compare the two system configurations of Table 1 in terms of

the message throughput, cluster scalability, and availability.

Therefore, we created our own experimental environment. The

experimental environment consists of a test cluster, workload

generators, a DNS server, and a SQL DB server.

5.2. Message throughput

We define the message throughput of an e-mail cluster system as

the number of messages that the system can process maximally in

a second. The workload generators generate a certain number of e-

mail messages in 60 seconds at a constant rate.

 And the total elapsed time for the system to process all messages

is measured. Then, the number of messages divided by the

measured time becomes the average number of messages, which a

system processes for a second.

Configuration 1-node 2-nodes

EarthLink 7.2 15.9

E-mail cluster system 8.7 19.1

Table 2: Message throughput of e-mail system configuration

(messages/second)

Table 2 . presents the message throughput of two e-mail system

configurations we have implemented. For a single node case,

cluster E-mail system has a slightly higher throughput than

EarthLink system. Result shows that the message throughput of

the system is increased as the cluster increases.

6. Conclusion and Future Work

We have presented a design of e-mail cluster system that satisfies

requirement of scalability, availability and extensibility. By

implementing two different configurations of the system with the

MTA-MDA structure, the flexibility and the extensibility of the

proposed system are demonstrated.

 Experimental results show that all the implemented systems are

scalable in the sense the maximum throughput of the system is

largely proportional to the number of cluster nodes.

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 9
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

7. References

[1]Cemal Yilmaz, Atif M. Memon, and Adam A. Porter. Arvind

S. Krishna, Douglas, Aniruddha Gokhale and

Balachandran Natarajan.Preserving distributed systems‟

critical properties, IEEE software, 2004.

[2] Lu.Wittgenstein, Distributed application architecture,

java.sun.com/developer/Books/jdbc.

[3]Feng Zhou, Chao Jin, Yinghui Wu, Weimin Zheng. Cluster

Object Storage Platform Designed for Scalable Services,

IEEE 2003,

[4]Armando Fox and Steven D. Gribble and Yatin Chawathe and

Eric A.Cluster-Based Scalable Network Services, ACM,

1997.

[5] Jeffrey Voas, .Software‟s secret sauce: The “-ilities”, IEEE

software, 2004.

[6]Terry Bollinger, Jeffrey Voas, and Maarten Boasson.,

Persistent Software Attributes. IEEE software 2004.

 [7]Yasushi Saito and Brian N. Bershad and Henry M. Levy.,

Manageability, Availability and Performance in Porcupine:
A Highly Scalable, Cluster based Mail Service, ACM, 2000.

[8]Milan Milenkovic, Scott H.Robin, Rob C, Knauerhase, David

Barkai, Sharad Grag, Vijay Tewari, Todd A. Anderson, and

Mic Bowman Towards Internet distributed computing,2004,.

[9]Henri E.Bal, Jennifer G. Steiner and A.S. Tanenbaum.,

Programming languages for distributed computing systems.

ACM computing surveys, 1989.

[10]PM.Rani, A.V.Srinivas and D.J.Ram., Scalability issues in

CORBA, IEEE software engineering for parallel and

distributed systems, 2000.

[11]Aung, S.S., Naing T, Khaing MoeSan, Naing, T.T. and

NiLar Thein, consistency control systems for remote

object replication, IEEE information and

telecommunication technologies, 2005.

[12]A.V.Srinivas and D.Janakiram. A model for characterizing

the scalability of distributed systems, ACM sigops

operating systems review, 2005.

[13]K. Nadiminti, M. Dias de A., and R. Buyya., Distributed

systems and recent innovations: challenges and benefits,

2005.

8.Author’s profile

Name: Ravi Uyyala

Email:uyyala.ravi@gmail.com.

Qualification: BE(CSE),MTECH(CSE)

Designation: Associate professor:

Institute:Bm college of technology,indore,india

Name:Raghuram Battini

Email:Raghu.battini @gmail.com.

Qualification: BE(CSE),MTECH(CSE)

Designation: Associate professor:

Institute:MVGREngineering College,Vijayanagaram,,india

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 10
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Name: Kundan Kumar Mishra

Email: kundankumarmishra@gmail.com.

Qualification: BE(IT),MTECH(CSE)

Designation: Associate professor:

Institute:Bm college of technology,indore,india

